
A Scenario-Driven Approach to Traceability

Alexander Egyed
Teknowledge Corporation

4640 Admiralty Way, Suite 231
Marina Del Rey, CA 90292

+1 310 578 5350
aegyed@acm.org

ABSTRACT
Design traceability has been widely recognized as being an
integral aspect of software development. In the past years
this fact has been amplified due to the increased use of leg-
acy systems and COTS (commercial-off-the-shelf) compo-
nents mixed with the growing use of elaborate “upstream”
software modeling techniques such as the Unified Model-
ing Language (UML). The more intensive emphasis on
upstream (non-programming) software development issues
has, however, widened the gap between software compo-
nents (e.g., subsystems, modules) and software models
(e.g., class diagrams, data flow diagrams), creating the need
for a better understanding of the intricacies and interrela-
tionships between the two. This paper demonstrates how
observable run-time information of software systems can
be used to detect traceability information between software
systems and their models. We do this by employing a tech-
nique that evaluates the “footprints” that usage scenarios
(e.g., test cases) make during the execution of software
systems. Those footprints can be compared, resulting in
additional traceability information among modeling ele-
ments associated with those scenarios. Our approach is tool
supported.

Keywords
traceability, test scenarios, models, UML, legacy systems

1 INTRODUCTION
Science and engineering alike stress the importance of be-
ing able to reproduce results. A general technique for ena-
bling this is being able to trace ones steps from inception to
transition. If done comprehensively, tracing can outline
every step along the way of how a problem is transformed
into a solution, including intermediate results and findings.
Software development needs traceability for that same rea-
son [15].

It has been argued repeatedly that software developers need
to capture traces [6,17] between requirements, design, and
code. Most trace capture methods, however, require exten-
sive manual intervention [7,9] (e.g., via naming dictionaries

or traceability matrices); only rare cases have (semi) auto-
mated support [2,12] (e.g., via formal methods). Despite
the effort spent in generating and validating trace informa-
tion, they are often mistrusted since they may have become
obsolete due to separate evolution of models and systems
[11]. This causes a dilemma because if a software analyst,
architect, designer, or programmer cannot trust existing
trace information, then it has lost its value [6,7]. It does not
matter whether, say, 70% of the trace information is actu-
ally correct if it is unknown which 70% that is. The mis-
trust in the accuracy of models and their trace information
leads to a practice of disregarding them [3], frequently only
created because some process required it [5,9]. This, how-
ever, reduces models and diagrams to mere pictures with-
out any “life.”

The recent emergence of new modeling techniques, like the
Unified Modeling Language (UML) [13], and their rapid
and increasing acceptance into the main stream software
development process, has revitalized the need for under-
standing the intricacies and interdependencies between
model elements and their corresponding software systems.
This is because models promise one very important thing: a
different way of looking at software and, in doing so, a
better way of gaining insight into it. Nevertheless, the past
years have seen little progress in the problem of how to
relate models and systems. Without such relationships one
may question the foundation of modeling since there is
little or no value in using a software model that does not
consistently represent the real software system [4,6]. Thus,
what is needed is trace information and the lack of it consti-
tutes a severe problem – also known as the traceability
problem [6,8].

This work introduces a new, strongly iterative approach on
how to generate traceability information based on observ-
ing test scenarios that are executed on running software
systems. These observations are then used for establishing
traces between model elements (e.g., classes and data flow
elements) and their corresponding source code (the sys-
tem). Furthermore, our approach then shows how to gener-
ate trace information between model elements themselves
(e.g., model elements of different diagrams). The latter is
done by comparing the impact that test scenarios have on
the code level. We call that impact “footprint.”

As a pre-requisite, our approach requires (1) the existence
of an observable and executable software system, (2) a cor-

Proceedings of the 23rd International Conference on
Software Engineering (ICSE), Toronto, Canada, May
2001, pp. 123-132



2

responding software model, and (3) scenarios describing
test cases or usage scenarios of the software system or its
components. Our approach first creates trace information
between the running system and scenarios; it follows by
comparing those traces with hypothesized traces. Our ap-
proach then generates new trace information and validates
existing ones. We will demonstrate the workings of our
approach in context of the Inter-Library Loan (ILL) system
[1], a third-party software system. This example also incor-
porates the use of a COTS component (Microsoft Access)
demonstrating our approach’s ability to also support third-
party software components that are not readily observable.

Our approach may be used during reverse engineering (e.g.,
of recently developed systems or legacy code) or during
forward engineering. The latter may not be intuitive at first
since a running system is required; however, partial imple-
mentations (e.g., sub components) or even prototypes are
sufficient to commence analysis. Our tool, called
TraceAnalyzer, automates our approach.

2 APPROACH OVERVIEW
Our approach adds a reengineering element to trace infor-
mation detection and validation. It does this by matching
development models (static information) against the actual
implementation and execution of the software product (dy-
namic information) in order to identify dependencies be-
tween them. These dependencies can then be used to estab-
lish traces. Our approach works once an executable or
simulateable software system becomes available, which
may not necessarily be the final release of a system but
could also be a partial implementation or incremental pro-
totype.

Once an executable system is found, the behavior of that
system is observed using kinds of test scenarios that are
typically defined during its development (e.g. acceptance
test scenarios, module test cases, etc.). By applying those
scenarios onto the system the internal activities of that sys-
tem can be observed and recorded. Since those observa-
tions correspond directly to scenarios this implies that trace
information is established between those scenarios and the
system – we refer to the source code that is executed while
testing a scenario as its footprint. Our trace analysis ap-
proach relies on monitoring tools for spying into software
systems during their execution or simulation. Those tools
are readily available. For instance, we used a commercial
tool from Rational Software called Rational PureCover-
age in order to monitor the running Inter-Library Loan
(ILL) system. As such, the tool monitored what lines of
code were executed how many times and when.

Scenarios, which are tested against the running software
system, can be of different forms. Scenario descriptions
may be in plain English, in some form of diagram (e.g.,
sequence diagram [13]), or in a formal representation that
can be interpreted by an automated testing tool. It is not
important for our approach whether scenarios are tested
manually or automatically, as long as a trace observation
tool, like Rational PureCoverage, is used to observe the

footprints these scenarios make. Testing scenarios may thus
be as simple as manually interpreting them or as advanced
as automatically testing them via testing tools. Either way,
this paper contributes an automated approach for interpret-
ing observed run-time information to establish traces be-
tween model elements. In particular we are able to generate
and validate the following four types of traces (see also
Figure 1):

(a) traces between scenarios and system,
(b) traces between model elements and system,
(c) traces between scenarios and model elements, and
(d) traces between model elements

Our approach consists of four major activities called Hy-
pothesizing, Atomizing, Generalizing, and Refining. Hy-
pothesizing (the first activity) requires reasoning about
traces that may exist in the analyzed system (traces of types
‘b’, ‘c’ or ‘d’). Hypothesized traces can often be elicited
from system documentation or corresponding models. If no
documentation is available, hypothesizing may have to be
done manually; however, hypothesizing becomes more
automated over time since traces generated via an iteration
of our approach can be used as hypothesized traces in a
successive iteration. Our approach uses current knowledge
about traces and permutates them with observable foot-
prints (trace of type ‘a’) to build a footprint graph (see at-
omizing). This footprint graph becomes the foundation for
advanced traceability reasoning in generalizing and refin-
ing. Hypothesized trace information does not have to be
comprehensive nor does it have to be (fully) correct. We
will show examples that demonstrate that inconsistent and
insufficient trace hypotheses may result in contradictions
and ambiguities during generalizing and refining that make
them detectable.

The second activity, Atomizing, builds a so-called footprint
graph out of observable trace information. The goal of the
footprint graph is to depict the most basic (atomic) foot-
prints any two scenarios have in common. The footprint
graph is then used as a foundation for the two remaining
activities Generalizing and Refining. Generalizing traverses
the footprint graph starting at its “leaves” (most atomic
footprint elements) to propagate (generalize) trace informa-
tion to their “parents.” Refining, the reverse activity, then

Scenarios
Model

Elements

System

observed
traces

hypothesized traces

generated traces

generated traces

generated
traces

hypothesized traces

hypothesized traces

(a) (b)

(c)

(d)

Figure 1. Trace Types and their Interrelationships



3

traverses the footprint graph starting at its “roots” (most
general parents) to propagate (refine) trace information to
its leaves.

Our approach can generate new trace information of types
(b), (c), and (d) (recall Figure 1) or, if contradictions are
encountered, our approach can also invalidate existing (hy-
pothesized) trace information. Since initial traces are hy-
pothesized, contradictions imply situations where the hy-
pothesis does not hold. The number of hypothesized traces
required to use our approach is entirely variable. As a gen-
eral rule, the more correctly hypothesized trace information
available, the fewer contradictions will be encountered and
the fewer ambiguities will be found.

3 EXAMPLE
To evaluate our approach, we applied it to some real-world
projects. This paper shows one of those projects, the Inter-
Library Loan System (ILL) [9], to demonstrate the work-
ings of our approach. The ILL system automates the lend-
ing process of books, papers, and other forms of media
between libraries. The system was successfully transitioned
to the customer where patrons use it to order documents not
available locally. ILL allows document requests to be filed
via a web browser which in turn submits them as tagged
emails to a specially dedicated email account. There, email
messages are read and processed by a part of the ILL sys-
tem called the PopRead component.

For simplicity, this paper only uses the PopRead compo-
nent which is illustrated in Figure 2. On the left, the figure
shows the functional decomposition of the PopRead com-
ponent in form of a data flow diagram (DFD) (as depicted
in the Software System Requirements Document (SSRD)
[9]). In the middle, the figure shows the corresponding ob-
ject-oriented design using a UML class diagram, and, fi-
nally, on the right, the figure shows a use case diagram

depicting the major services
the Popread component has
to offer (from a user interface
perspective). All three views
show the PopRead compo-
nent in a high-level fashion. It
can be seen that PopRead
reads email messages from
the Inbox (POP3 account),
parses them, and if the pars-
ing is successful (OnSuc-
cess), stores the identified
requests in a back-end data-
base (MS Access).

Associated with the PopRead component, the ILL develop-
ers also created a number of usage scenarios (Table 1). One
such scenario is checking for mail and unsuccessful parsing
(scenario C). Another scenario is the starting of the
Popread application, displaying its About box, and shutting
it down (scenario F). It was part of the development team's
process to create structural views (such as the ones in
Figure 2) as well as behavioral views (such as the scenarios
in Table 1). The ILL team used mostly UML sequence
diagrams to describe scenarios and UML class diagrams
and data flow diagrams to describe structure.

Despite all the modeling and documentation, the ILL team
failed to describe how the PopRead design elements (Fig-
ure 2) were actually implemented. Thus, trace information
from the dataflow, class, and use case diagrams to the
source code (the software system) was missing. It remained
unclear from the specification provided, what source code
functions and implementation classes were used by what
higher-level elements (e.g., what lines of code were used by
the dataflow element Add Request). Additionally, the de-
velopment team did not specify how the dataflow, class,
and use case diagrams relate to one another. It remained
unclear what higher-level classes make up individual data
flow processes (e.g., is the class Request used in the data
flow diagram?). Even in this rather small example those
traces were not obvious since functional and object-
oriented decomposition were mixed.

Some documents, however, did capture trace information.
The only problem is that we cannot safely assume their
correctness. We already discussed previously that trace
information is frequently defined and maintained explicitly
(e.g., in documents) which require manual labor to keep up
to date [2]. Even if the development team took the effort to
document the final traces, the activity of identifying trace
information manually would still be very error-prone. In
the following, we will show how we can use existing trace
information, despite the lack of faith in it, to generate new
traces and validate old ones.

4 HYPOTHESIZING
Testing the system or some of its components and observ-
ing their traces is a straightforward activity. Table 2 shows
the summary of observing the footprints of the eight test

Database
Back-End

Inbox

Get
Mail

Add
Request

Delete
Mail

On Success

PopreadApp

Inbox

DBBackEnd

Parser

Request

Class Diagram (CD)
Data Flow Diagram

(DFD)

UserInterface
Check Request

Actor
Exit

Settings

About

Use Case Diagram
(UCD)

Parse
Request

Figure 2. Popread Component of ILL System [9] represented in three different diagrams

Table 1. Some ILL Test Scenarios
A Show the About box
B Check for new mail without any present
C Check and unsuccessful read (one mail)
D Modify settings
E Startup and shutdown
F Startup, show about, and shutdown
G Check Request
H Delete inbox entry



4

scenarios from Table 1 using the Rational PureCoverage
tool. By a footprint we mean the classes that were executed
while testing a scenario. The numbers in Table 2 indicate
how many methods of each class were used. For instance,
scenario “A” used ten methods of the class CAboutDlg and
three methods of the class CSettingsDlg. Table 2 does not
display the actual methods in order to reduce the complex-
ity of this example (the footprint graph shown later would
otherwise get too big). Nevertheless, by only using classes
the generated traces will still be useful, albeit, course-
grained. If more fine-grained traces are needed then trace
analysis has to be performed by observing the methods of
classes or even the lines of code. Our approach remains the
same.

Hypothesizing is the only manual activity of our approach.
The goal of this activity is to reason (hypothesize) about
potential trace information. One potential trace could be
from scenario A to the use case About in Figure 2 (see also
Table 4). Another potential trace could be from the high-
level class PopreadApp to the implementation classes
CApp and CMainWin (see also Table 3). Our approach re-

quires only a fairly limited amount of hypothesized trace
information; otherwise, the cost of using it would be too
high. Table 4 and Table 3 show a list of twelve traces we
hypothesized. We assume that most traces are at least par-
tially correct; however, our approach can pinpoint wrong
traces plus create new ones by matching the derived trace
information against the observed trace information. These
traces, together with the trace observations that were auto-
matically generated (Table 2) can now be used for further
reasoning.

5 ATOMIZING
In order to reason about traces and how they relate to
model elements, we need to intertwine scenarios, model
elements, their footprints, and hypothesized trace informa-
tion. In order to do this, we have devised a footprint graph.
Figure 3 depicts the complete footprint graph for the eight
scenarios in Table 1. This graph also forms the foundation
for the remaining activities of our approach: Generalizing
and Refining.

One property that graph has is that footprints of observed
trace information are split up into as many nodes as needed
to explicitly represent all possible overlaps between scenar-
ios (overlaps are footprints that any two scenarios have in
common). For instance, scenario “A” has the observed
footprints {0/8} (Table 2) and, similarly, scenario “B” has
the observed footprints {3/5/6/8} (see also nodes “A” and
“B” throughout Figure 3). However, both scenarios also
overlap since they share the footprint {8} which corre-
sponds to the implementation class CMainWin (Table 2). In
order to capture that overlap, another node was created
(node “AB”) and that node was then declared to be a
“child” of both nodes “A” and “B.” Nodes “A” and “B”
also have footprints they do not share but those are of no
importance unless they overlap with footprints of yet other
scenarios.

Once scenario “C” is added to the footprint graph, it is
found that it overlaps with scenarios “A” and “B.” In fact,
the footprint of scenario “B” is a subset of the footprint of
scenario “C.” The node for scenario “B” is thus made into a
child of the node for “C” (called “C/G” in Figure 3). In rare
cases it may even happen that two scenarios have the exact
same footprint as in the case of scenarios “C” and “G.” A
common node for both “C” and “G” was thus created, ergo
its name “C/G.” Note that scenario “C” also overlaps with
scenario “A,” however, that overlap was already captured
via its link to node “B” which, in turn, has node “AB” as
one of its children. Therefore, another property of our
graph is that overlaps between scenario footprints are cap-
tured in a hierarchical manner to minimize the number of
nodes required.

Building a footprint graph is not very difficult since it only
involves two major steps. For each new scenario added to
the graph, the first step tries to identify the largest node
(large with respect to the number of footprints covered) that
is either equal to or part of the new scenario (e.g., as “C”
was equal to “G” or as “B” was a part of “C”). If two nodes

Table 2. Observeable Scenario Footprints

A B C D E F G H
CAboutDlg 0 10 10

CILLDB 1 3 2 2 2 4

CILLDBSet 2 4 4

mailreader 3 3 4 7 1 1 5 1

parsing 4 6 6

POP3 5 8 10 2 2 2 11 1

CPOP3Dlg 6 4 4 1 4 4 4

CAPP 7 1 1

CMainWin 8 3 5 5 3 6 7 5

CSettingsDlg 9 15

Class Scenario

Table 3. Hypothesized Trace Information
Model Elements System

CD::Request [c] mailreader, POP3 {3/5}

CD::DBBackEnd [e] CILLDB, CILLDBSet, POP3 {1/2/5}

CD::PopreadApp [a] CApp, CMainWin {7/8}

CD::UserInterface [b] CAboutDlg, CPOP3Dlg, CSettingsDlg
{0/6/9}

Table 4. Hypothesized Trace Information
Scenario Model Elements

A UC::About [p]

B DFD::Inbox, DFD::GetMail [g/h]

C CD::Request, CD::Inbox, CD::Parser [c/d/f]

D UC::Settings [o]

E CD::PopreadApp [a]

F CD::PopreadApp, CD::UserInterface [a/b]

G UC::CheckRequest, DFD::Inbox, DFD::GetMail,
DFD::ParseRequest, DFD::DeleteMail,
DFD::DatabaseBackEnd [m/g/h/i/j/k/l]

H CD::Inbox [d]



5

are equal then they are merged together and if one node is a
subset of the other then a parent-child relationship is estab-
lished.

In case no node is found or in case a found node only par-
tially covers the footprint of the new scenario, a second
step is performed on the remaining footprints of the new
scenario. The second step tries to find the smallest nodes
(small with respect to the number of footprints covered)
that overlap with the new scenario (e.g., scenario “A” over-
lapped with “B”). In this case a new node is created con-
taining the overlapping footprints. That node is then de-
clared to be child of both overlapping parents (e.g., node
“AB”).

Applying the above algorithm to all scenarios results in a
footprint graph like Figure 3. The naming convention used
in the graph is that each node refers to the scenarios it was
created from. In case a single letter is used (e.g., “B”) the
node refers to the complete scenario “B.” Accordingly, the
footprints listed in curly brackets must be equal to the foot-
prints the scenario relates to (in Table 2 it can be seen that
scenario B relates to footprints 3, 5, 6, and 8 just like node
“B” does). In the case where a node has multiple letters
separated by a slash then their corresponding scenarios
have equal footprints (e.g., “C/G”). When a node has mul-
tiple letters without any separators then it represents a sub-

set of footprints its parent nodes have in
common (e.g., node “AB” contains the
overlapping footprints of nodes “A”
and “B”).

The graph also makes use of lower case
and upper case letters. The upper case
letters refer to scenarios that have ob-
served trace information (like the sce-
narios in Table 2) whereas the lower
case letters refer to model elements that
have (hypothesized) trace information
(like the model elements in Table 3).
The key on how to interpret the lower
case letters is given in Figure 3. For
instance, node “a” stands for the class
PopreadApp (CD::PopreadApp),
which, in Table 3, was hypothesized to
trace to CApp {7} and CMainWin {8}
(note: “CD” stands for class diagram).
A final convention used in the footprint
graph is in its references to model ele-
ments. For instance, node “B” was hy-
pothesized to refer to DFD::Inbox [g]
and DFD::GetMail [h] (Table 4), ergo
“[g/h].” We use these naming conven-
tions for brevity since otherwise Figure
3 would be too crowded and might not
fit into a single page. Naturally, using
abbreviations is only useful for demon-
stration purposes.

Another important property of the foot-
print graph is that children of nodes

(e.g., “ABa” and “ABb” for node “AB”) have non-
overlapping footprints; each child represents a distinct sub-
set of its parent’s footprint. Also, the union of all children’s
footprints is always equal to or a subset of the footprints of
their respective parents. These two properties are important
for the next two steps where we use the footprint graph for
Generalizing and Refining. Although, atomizing is mainly a
preparation step, we can already derive some new trace
information from it. For instance, node “C/G” shows a case
where two scenarios share the exact same footprints.
Through Table 4 we know that scenario C was hypothe-
sized to trace to CD::Request, CD::Inbox, and CD::Parser
[c/d/f]; and that scenario H was hypothesized to trace to
UC::CheckRequest, DFD::Inbox, DFD::GetMail,
DFD::ParseRequest, DFD::DeleteMail;
DFD::DatabaseBackEnd [m/g/h/i/j/k/l]. We can now make
three trace assumptions:

1. The use case CheckRequest relates to the classes {Re-
quest, Inbox, Parser} (trace type (d) in Figure 1)

2. The use case CheckRequest also relates to the data flow
elements {Inbox, GetMail, ParseRequest, DeleteMail,
DatabaseBackEnd} (trace type (d))

3. The classes {Request, Inbox, Parser} relate to the data
flow elements {Inbox, GetMail, ParseRequest, Delete-
Mail, DatabaseBackEnd} (trace type (d))

B [g/h]
{3/5/6/8}

A [p]
{0/8}

AF
{0}

CD
{1}

H/c [d/c]
{3/5}

H/ce
{5}

D [o]
{1/3/5/6/8/9}

Db
{9}

F [a/b]
{0/1/3/5/6/7/8}

E [a]
{1/3/5/6/7/8}

AB
{8}

AF
{0}

B [g/h]
{3/5/6/8}

C/G [c/d/f/m/g/h/i/j/k/l]
{1/2/3/4/5/6/8}

C/Ge
{2}

H/c [d/c]
{3/5}

H/ce
{5}

CD
{1}

B [g/h]
{3/5/6/8}

AB
{8}

H/c [d/c]
{3/5}

H/ce
{5}

CD
{1}

Ea
{7}

e [e]
{1/2/5}

CD
{1}

H/ce
{5}

C/Ge
{2}

a [a]
{7/8}

AB
{8}

Ea
{7}

b [b]
{0/6/9}

AF
{0}

Bb
{6}

Db
{9}

a CD::PopreadApp i DFD::ParseRequest
b CD::UserInterface j DFD::AddRequest
c CD::Request k DFD::DeleteMail
d CD::Inbox l DFD::DatabaseBackEnd
e CD::DBBackEnd m UC::CheckRequest
f CD::Parser n UC::Exit
g DFD::Inbox o UC::Settings
h DFD::GetMail p UC::About

Bb
{6}

AB
{8}

Bb
{6}

AB
{8}

Bb
{6}

roots

leaves

parent
and child

Figure 3. Footprint Graph representing atomic footprints (in order to make the
figure readable, the graph is depicted in a tree structure using duplication (e.g., the

node B is replicated several times but should be considered as one node)



6

4. The scenarios “C” and “G” trace to various additional
model elements (trace type (c) in Figure 1)

The rationale behind this reasoning is that if multiple model
elements share the same lines of code (footprint) then they
have to be related. For instance, the first assumption above
implies that if CheckRequest executes the same lines of
code as Request, Inbox, and Parser do then, on a higher-
level, it can be said that CheckRequest uses the classes Re-
quest, Inbox, and Parser. There is only one significant as-
sumption in above observation: that the given (hypothe-
sized) trace information is correct (consistency assump-
tion). This statement seems to contradict an earlier state-
ment where we claimed that hypothesized information need
not always be correct. In fact, both statements are accurate.
In Table 3 and Table 4 we made hypotheses we assume to
be correct. Therefore, this approach will treat them as being
correct (even if they are not) until a point of contradiction
is reached that invalidates them. We can already find one
such contradiction in our footprint graph.

Node “H/c” shows an example where scenario “H” and
model element “c” were found to have the same footprints
(see Table 2 and Table 3). Naturally, node “H/c” must trace
to model element [c] since that element is part of the node,
however, node “H/c” also traces to the model element [d]
(CD::Inbox) as defined in Table 4. In that respect, this case
is similar to the previous case “C/G,” although here is one
fundamental difference: It was observed that deleting an
inbox entry (scenario “H”) results in the same footprint as
the class Request was hypothesized to have (model element
“c”). Again making a consistency assumption (as we did
above) we have to conclude that model element [c] must
trace to the model elements of scenario “H” since they
share the same footprint. This implies that model element
[c] must trace to model element [d] – a contradiction. The
contradiction implies that either trace information is incor-
rect (e.g., scenario “H” should also trace to Request) or it
implies that class Inbox is used by class Request. In this
case, the latter is true as can be seen in Figure 2.

To generalize from above cases, Figure 4 depicts all pat-
terns that may be encountered while comparing any two
number of footprints. Those patterns also form the founda-
tion for understanding the relationships between model
elements:

1) If the footprints of two scenarios do not overlap then
this implies that there is no relationship between both
scenarios and their model elements

2) If the footprints of two scenarios partially overlap then

this implies that some common model elements exist
3) If the footprint of one scenario is completely engulfed

by the footprint of another one then this implies that
model elements of the one are also used by the other

4) If the footprints of two scenarios are exactly alike then
this implies the equivalence of both scenarios in the
model elements they use

6 GENERALIZING
The pure hierarchical decomposition of the footprint graph
allows us to further reason about the dependencies between
its nodes. Of course, one dependency is the decomposition
of footprints; however, the relationship between trace in-
formation and model information is also useful. For in-
stance, the node “H/c” (depicted in tree form in Figure 3
and in graph form in Figure 5) traces to model elements
[c/d] 1. Since node “H/c” is also a child of node “B,” it can
be assumed that node “B” uses all model elements of node
“H/c” (making again a consistency assumption; also recall
Figure 4). This implies that node “B” should not only trace
to model elements [g/h] but also to model elements [c/d]2.
This activity of propagating model information upwards on
the footprint tree can be repeated for all child nodes. We
refer to this activity as Generalizing since model informa-
tion is generalized from child nodes to their parent nodes.
By generalizing model information from the child “H/c” to
the parent “B,” we can make two trace assumptions:

1. Scenario “B” traces to the classes Request and Inbox
2. Classes Request and Inbox trace to data flow elements

Inbox and GetMail

The first assumption reveals a trace from a scenario to
model elements (trace type (c) in Figure 1) and the second
assumption reveals a trace between two groups of model
elements (trace type (d) in Figure 1). The latter assumption
is still ambiguous since it implies that a subset of the two
classes must trace to a subset of the two data flow elements.
Nevertheless, previously, we did not have knowledge about
traces between them; now we have some information.

Generalizing affects two additional nodes (“F” and “E”) in
Figure 5. After propagating model information from their
children we find that the node “E” now traces to model
elements [a/c/d/g/h] and that node “F” now traces to model
elements [a/b/c/d/g/h]. This also implies that model ele-
ment “a” (class PopreadApp) also traces to the data flow
elements [g/h]. We already know that model elements [c/d]
trace to model elements [g/h].

7 REFINING
Through generalizing a large amount of new trace informa-
tion becomes available. However, we still have a fair num-
ber of unexplored nodes. For instance, in case of the node
“AF” in Figure 5 it remains unknown what model elements

1 Note that we disregard the previous contradiction with respect to
these elements for the sake of this exercise.
2 Note that there is no new contradiction here since elements [c/d]
and [g/h] are part of different diagrams

A

B

A

B
A,B

A
B

A≠B B⊂A A≡B
1) 2) 3) 4)

B∩A

Figure 4. Possible overlaps of footprints



7

it traces to. Knowing about trace information for node
“AF” would be of great value since it could bridge the
nodes “A” and “F.” Refining, the final activity of our trace
analyzer approach, takes information from parents and
propagates it down to their children. As such, refining tries
to induce what implications model elements on the parent’s
side might have onto their children. Refining is, however,
not as simple as generalizing and depends on a number of
conditions. Figure 6 depicts the refinement activity in con-
text of the subgraph from Figure 5.

Take, for instance, node “A” that traces to model element
[p] and also has two children called “AF” and “AB.” Since
its children cover the same footprints as their parent, it fol-
lows that they, together, must also trace to model element
[p] (consistency assumption). Since node “A” refers to a
single model element this implies that nodes “AF” and
“AB” respectively must trace to a subset of this single
model element. Since we do not split up model elements at
this point, it follows that nodes “AF” and “AB” must both
trace to [p].

A similar argument holds for node “F” and its children
“AF” and “E.” This differs from the case above in that one

child (“E”) already has substantial trace information avail-
able. Again the consistency assumption implies that node
“AF” must refer to all those model elements of node “F” to
which node “E” is not referring. For instance, node “F” has
a trace to model element [b] to which node “E” does not
trace. Since nodes “AF” and “E” together also completely
cover all footprints of node “F” it follows that node “AF”
must trace to model element [b]. It is also possible that
node “AF” traces to all model elements of node “E;” how-
ever, this may not be true in all cases. In order to avoid
incorrect model element propagation we have to ignore
model elements [a/c/d/g/h]. After refining, node “AF” has
two new traces implying that model element [b] (class
UserInterface) must trace to model element [p] (use case
About).

Node “E” and its children “CD,” “B,” and “Ea” is another
example. Previously, we found node “E” to trace to model
elements [a/c/d/g/h]. This, however, implies that node “E”
now has a trace to model element [a] for which it has no
child. Making the same assumption as above, we can infer
that model element [a] can be propagated to the two child
nodes “CD” and “Ea.”

Node “B” describes a special case. Node “B” traces to two
model elements of the class diagram [c/d] and two other
model elements of the data flow diagram [g/h]. As in some
previous cases, traces to model elements of different dia-
grams have to be treated separately. Thus in this case, the
model elements for the class diagram have to be investi-
gated separately from the model elements for the data flow
diagram. Since currently the child “H/c” already occupies
both trace links to the class diagram we encounter a contra-
diction in that there are no class diagram elements left for
nodes “AB” and “Bb.” Simply speaking, if node “B” traces
to two classes then each child of that node must trace to a
non-empty subset of it (consistency assumption). We could
assume scenario “Bb” and “AB” to also trace to [c/d]; how-
ever, this assumption may not be valid in all cases.

Node “B” also makes references to the data flow elements
[g/h]. In this case we find that none of its children refers to
any data flow element. Again it is assumed that each child
must refer to a non-empty subset of [g/h] resulting in am-
biguous traces from “AB,” “Bb,” and “H/c” to [{g/h}]. The
ambiguity is indicated in form of curly brackets within the
model element list. In case of node “H/c” it is assumed that
it traces to both “c,” “d,” and to either one or both of
{g/h}.” The refinement of “H/c” is another special case. Its
child node “H/ce” has only a subset of the footprints of
node “H/c.” Thus, node “H/ce” may potentially only refer
to a subset of the model elements of “H/c.” It follows that
the model elements [c/d] are propagated and declared am-
biguous.

As can be seen in above cases, the activity of refining is
more complex than generalizing and also results in numer-
ous ambiguities. Nevertheless, refining also adds new trace
information and it paves the foundation for a subsequent
generalization. For instance, the model information in node

B [g/h]
{3/5/6/8}

F [a/b]
{0/1/3/5/6/7/8}

E [a]
{1/3/5/6/7/8}

AF
{0}

AB
{8}

H/c [c/d]
{3/5}

H/ce
{5}

CD
{1}

Ea
{7}

B [c/d/g/h]
{3/5/6/8}

F [a/b/c/d/g/h]
{0/1/3/5/6/7/8}

E [a/c/d/g/h]
{1/3/5/6/7/8}

A [p]
{0/8}

Bb
{6}

Figure 5. Generalizing model information

AB [p{g/h}]
{8}

Bb [{g/h}]
{6}

H/c [c/d/{g/h}]
{3/5}

Ea [a]
{7}

CD [a]
{1}

AF [p/b]
{0}

H/ce [{c/d}]
{5}

A [p]
{0/8}

F [a/b/c/d/g/h]
{0/1/3/5/6/7/8}

E [a/c/d/g/h]
{1/3/5/6/7/8}

B [c/d/g/h]
{3/5/6/8}

Figure 6. Refining model information



8

“AF” could now be generalized again to its parents, result-
ing in additional trace information to other scenarios (e.g.,
model element “b” could be propagated to scenario “A”).
The activities of generalizing and refining have to be re-
peated as long as model information is propagated.

Due to the limited space we are not able to elaborate on all
propagation rules we have discovered. However, the most
important situations have been summarized.

8 AUTOMATION AND TOOL SUPPORT
Our tool, called TraceAnalyzer, supports our approach by
automating the activities atomizing, generalizing, and refin-
ing. Figure 7 depicts a few screen snapshots of our tool.
The lower left part of the figure depicts the main window
showing the footprint graph and generalized trace informa-
tion. Our tool takes observed trace information (e.g., as
generated via Rational PureCoverage in lower-right of
Figure 7) as well as hypothesized trace information (upper-
left of Figure 7) as input. Our tool then generates the foot-
print graph and propagates trace information up and down
that graph.

We currently do not employ automated testing tools. In-
stead, the testing of scenarios has to be done manually.
Future work includes the integration of our tool with a test-
ing and a modeling environment, since they together could
eliminate the need for users to directly interact with our
tool. Instead, trace information would be supplied by the
testing tool and hypothesized trace information would be
supplied by the modeling tool. Our tool could then perform
trace analyses in the background, continuously updating the

modeling tool with new trace information. We currently
have extensive experience working with modeling tools
like Rational Rose. We previously developed an automated
consistency-checking tool called UML/Analyzer [4] that
would greatly benefit from such integration.

9 DISCUSSION

Quality of Trace Generation and Validation
In this paper, we presented an approach for observing, gen-
erating, and validating trace information. We started out
with only a few hypotheses; however, in the course of ana-
lyzing the given information, our approach was able to
generate new trace information and invalidate existing
ones. The following gives a short list of previously un-
known traces:

Traces between model elements and system:
• Class PopreadApp traces to CApp
• Use case About traces to CMainWin
Traces between scenarios and model elements:
• Scenario “H” traces to model element Request
• Scenario “A” traces to model element UserInterface
Traces between model elements:
• Use case About traces to class UserInterface
• Class PopreadApp traces to class Request

Upon inspecting the quality of the newly generated traces,
we indeed find that they fit the problem well. However, we
also detected a series of conflicts that may indicate that
some of the derived traces are incorrect. For instance, we
learned that, while refining model elements [c/d] from node
“E” to its children, a conflict was found in that one child

(node “H/c”) already traces to all
classes its parent node is tracing to.
This case, like others, pinpoints
problems where either to a little
information was given or an incon-
sistency exists. A user needs to
manually investigate these special
cases to resolve the conflict. In the
above case, it turns out that the
given hypothesized trace from sce-
nario “B” to model elements [c/d] is
incomplete.

Our approach generates ambiguous
traces and contradictions if insuffi-
cient or incorrect trace information
is provided. In order to improve the
quality of the results, two measures
can be taken: (1) the ambiguity of
trace information decreases as more
hypothesized trace information be-
comes available, and (2) the number
of contradictions decrease with the
degree of correctness of hypothe-
sized traces.

Analysis Granularity
In this example we used implemen-

Figure 7. Trace Analyzer tool to support scenario-based trace analysis



9

tation classes as the most atomic footprints. Implementation
classes can, however, be very complex and may not always
be the best choice. Upon validating our technique on other
projects, we found that footprints should generally be ana-
lyzed on the level of class methods. While inspecting the
ILL system, we already encountered a reason why finer
granularity results in better quality traces. In case of node
“AB” we found that it must trace to use case About and to
either the data flow elements Inbox or GetMail. These
traces are, however, counter-intuitive since displaying the
About box should have nothing in common with checking
for mail. The reason why our approach generated a connec-
tion between them was because they both use the same
class CMainWin. Upon closer inspection of that class we,
however, find that displaying the about box uses its method
OnAbout() whereas checking for mail uses its method
OnCheckRequest() (two distinct parts of the CMainWin
class). If we were to repeat our analysis on a finer level of
granularity (e.g., methods) then our approach would not
detect a relationship between the use case About and the
data flow elements Inbox and GetMail. In this paper, how-
ever, the example would have become too bulky to be of
any use for demonstration purposes. It must be noted that
both our approach and our tool support finer levels of
granularity.

Legacy Systems and COTS components
The ILL is a third-party software system and we were not
involved in its development. Furthermore, we did not have
the benefit of interacting with its developers while perform-
ing this study. Our situation is therefore comparable to the
situation of any development team that is asked to reuse old
legacy systems. While analyzing the ILL system we had to
use a number of trial-and-error steps to find hypothesized
traces that result in only few contradictions. Our approach
supports this type of explorative form of trace detection
since “success” can be measured in the number of ambigui-
ties and conflicts produced.

Our example also used COTS components. For one, the
Microsoft Foundation Classes (MFC) and a socket library
were used to display information and to access the POP3
server. Furthermore, Microsoft Access was used to store
book requests in a back-end database. Although, we were
not able to observe the internal workings of those compo-
nents, our approach nevertheless was able to generate trace
information to them since observable wrappers covered
those COTS packages. Those wrappers thus became a sub-
stitute for the COTS packages.

Functional and Object-Oriented Decomposition
An interesting feature of the chosen example is that it was
implemented in C++ but mixed functional and object ori-
ented decomposition. As such the parsing component was
implemented in a functional manner whereas the rest of the
system was implemented in an object-oriented manner. To
complicate matters, the model also mixed functional and
object-oriented styles (data flow diagram versus class dia-
gram). The fact that our approach uses the source code as a
foundation ignores conceptual boundaries. This property

also overlaps with some of the advanced separation of con-
cerns work (e.g., [16]) making our approach potentially
very useful in that domain as well.

10 RELATED WORK
Current literature contains ample publications about the
need for traceability [6,17], however, when it comes to how
to generate or validate trace information, the list becomes
very short.

The works of Gotel and Finkelstein [6] talk about the trace-
ability problem and why it still exists. One reason they be-
lieve to be the main cause is the lack of pre-requirements
traceability. They argue that tracing only requirements, as
many do, is not sufficient since requirements do not capture
rationale. We agree with their point; however, we also be-
lieve another reason to be the lack of traceability through-
out the entire development project, including the design.
Our work thus also enables design traceability.

Lange and Nakamura present a program for tracing and
visualization [10]. They took a similar approach to ours
since they observe run-time behaviors of software systems.
They also capture trace information; however, their empha-
sis is on how to visualize trace information and they do not
validate them.

Pinheiro and Goguen [12] took a very formal approach to
requirements traceability. Their approach, called TOOR,
addresses traceability by reasoning about technical and
social factors. To that end, they devise an elaborate net-
work of trace dependencies and transitive rules among
them. Their approach is mostly useful in context require-
ments tracing, ignoring the problem of design (diagram)
traceability. Murphy et al. [11] present a different but for-
mal technique where source code information is abstracted
to match higher-level model elements. They, however, use
their abstractions for consistency checking between model
and code but less so to infer trace information between dif-
ferent model elements as we do.

Concept analysis is a technique similar to our work on at-
omizing. Concept analysis, i.e., as used for reengineering of
class hierarchies [14], provides a structured way of group-
ing binary dependencies. These groupings can then be
formed into a concept lattice that is similar in nature to our
footprint graph. It is unclear, however, whether concept
analysis can be used to group three-dimensional artifacts as
required in the footprint graph.

The approaches of Haumer et al. [7] and Jackson [9] consti-
tute a small sample of manual traceability technique. Some
of them try to infer traces based on keywords whereas oth-
ers try to use a rich set of media (e.g., video, audio, etc.) to
capture and maintain “trace rationale.” Their works, how-
ever, only provide processes but no automated support (ex-
cept for capturing traces). As our example has shown,
traceability of even a small system can becomes very com-
plex. Manual traceability detection, though effective, can
thus become very costly.



10

Despite some deficiencies of the approaches above, all their
techniques are useful since they cover traceability issues
outside our domain or could be used to derive initial hy-
pothesized trace information needed for our approach.

11 CONCLUSION
We belief that traces are the “blood vessels” of models
(e.g., diagrams). These blood vessels act as their lifelines
and raise mere fanciful depictions of boxes and arrows into
legitimate, up-to-date, and useful representations of soft-
ware systems. With the absence of trace information or
with the uncertainty of their correctness, the usefulness of
models is severely limited. To date, however, creating and
validating trace information has been proven to be ex-
tremely time consuming and error-prone, resulting in high
cost. This is one of the reasons it is not often done compre-
hensively.

In this paper we introduced a approach for detecting new
trace information and for validating old ones. Our approach
is automated and tool supported. With our approach we
follow the belief that trace information has to be generated
and validated iteratively, contrary to the old practice of
“develop first, document later.” Our approach can and
should be used in a highly iterative manner where previ-
ously detected traces become the future hypothesized
traces. Its ability to “feed” onto previous results enables an
incremental approach to traceability generation and valida-
tion. This incremental aspect makes our approach also very
suitable for forward engineering since trace analyses of sub
systems (or sub components, i.e., legacy systems) can be
used as input to validate the system itself (e.g., validate the
parts then validate the whole). Thus, the hierarchical de-
composition of software systems into smaller subcompo-
nents and their prior individual testing provides executable
software systems early on. Our approach also applies natu-
rally to reverse engineering of recently development sys-
tems or legacy systems.

Future work includes the integration of our approach with
existing automated testing tools as well as modeling tools.
It is foreseeable that such integration could greatly reduce
the already little manual labor in using our approach. In-
stead whenever a new (sub) system is tested, a testing tool
could automatically trigger a new trace validation and the
required hypothesized trace information could be extracted
from a modeling tool.

ACKNOWLEDGEMENTS
The author would like to thank Dave Wile and all anony-
mous reviewers for constructive feedback. Teknowledge
Corporation did not support this work.

REFERENCES
1. Abi-Antoun, M., Ho, J., and Kwan, J. “Inter-Library

Loan Management System: Revised Life-Cycle Archi-
tecture,” USC-CSE, University of Southern California,
Los Angeles, CA 90089-0781, USA.

2. Antoniol, G., Canfora, G., and De Lucia, A.: "Maintain-
ing Traceability During Object-Oriented Software
Evolution: A Case Study," Proceedings of the IEEE In-

ternational Conference on Software Maintenance,
1998.

3. Clarke, S., Harrison, W., Ossher, H., and Tarr, P.: "Sub-
ject-Oriented Design: Towards Improved Alignment of
Requirments, Design, and Code," Proceedings of the
1999 ACM SIGPLAN Conferencer on Object-Oriented
Programming, Systems, Languages, and Applications,
Dallas, TX, October 1998, pp.325-339.

4. Egyed, A.: "Heterogeneous View Integration and its
Automation," PhD Dissertation, University of South-
ern California, Los Angeles, CA, August 2000.

5. Gieszl, L. R.: "Traceability for Integration," Proceed-
ings of the 2nd Conference on Systems Integration
(ICSI 92), 1992, pp.220-228.

6. Gotel, O. C. Z. and Finkelstein, A. C. W.: "An Analysis
of the Requirements Traceability Problem," Proceed-
ings of the First International Conference on Require-
ments Engineering, 1994, pp.94-101.

7. Haumer, P., Pohl, K., Weidenhaupt, K., and Jarke, M.:
"Improving Reviews by Extending Traceability," Pro-
ceedings of the 32nd Annual Hawaii International
Conference on System Sciences (HICSS), 1999.

8. Hughes, T. and Martin, C.: "Design Traceability of
Complex Systems," Proceedings of the 4th Annual
Symposium on Human Interaction with Complex Sys-
tems, 1998, pp.37-41.

9. Jackson, J.: "A Keyphrase Based Traceability Scheme,"
IEE Colloquium on Tools and Techniques for Main-
taining Traceability During Design, 1991, pp.2-1-2/4.

10. Lange D. B. and Nakamura Y.: Object-Oriented Pro-
gram Tracing and Visualization. IEEE Computer
30(5), 1997, 63-70.

11. Murphy, G. C., Notkin, D., and Sullivan, K.: "Software
Reflexion Models: Bridging the Gap Between Source
and High-Level Models," Proceedings of the 3rd ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, New York, NY, October 1995, pp.18-28.

12. Pinheiro F. A. C. and Goguen J. A.: An Object-
Oriented Tool for Tracing Requirements. IEEE Soft-
ware 13(2), 1996, 52-64.

13. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified
Modeling Language Reference Manual. Addison
Wesley, 1999.

14. Snelting, G. and Tip, F.: "Reengineering Class Hier-
achies Using Concept Analysis," Proceedings of the
ACM SIGSOFT Symposium on the Foundations of
Software Engineering, November 1998, pp.99-110.

15. Swartout W. and Balzer R.: On the Inevitable Inter-
twining of Specification and Implementation. Commu-
nications of the ACM 25(7), 1982, 438-440.

16. Tarr, P., Osher, H., Harrison, W., and Sutton, S. M. Jr.:
"N Degrees of Separation: Multi-Dimensional Separa-
tion of Concerns," Proceedings of the 21st Interna-
tional Conference on Software Engineering (ICSE 21),
May 1999, pp.107-119.

17. Watkins R. and Neal M.: Why and How of Require-
ments Tracing. IEEE Software 11(4), 1994, 104-106.


